
An introduction to Reinforcement
Learning for pricing.

Ben’s Gelateria.

Cesc Cunillera

2

What is Tesco

3

Data Science at Tesco

Team
Growth in the team size over 6 years
approaching a total team size of 120
Data Scientists and ML Engineers

Locations
Expanded from 1 to 4 global locations
Welwyn, London, Krakow, Bengaluru

Products
Supporting 30+ Technology Products
between algorithmic features and
data science platforms

Overseeing
PhDs
MSc Projects
PhD Internships

78%

20%

2%

0% 20% 40% 60% 80% 100%

PhD

MSc

BSc

Academic Background

Collaborating with
Top Universities

OR President's medal

4

An introduction to RL for pricing

0. Basics: states, MDPs and policies

1. RL and pricing

2. Tabular methods

3. Beyond tables: MC and policy
approximation

Taken from arXiv:2111.05884

States, MDPs and policies.

The basics.

6

States and observations

AGENT
(MODEL)

The idea behind reinforcement learning is to gather observations from the environment and train an
agent to make appropriate decisions based on those observations.

We assume the world is a chain of Markovian states. We can gather observations and interact with the
world through our decision making process acting on these states. The outcome of this interactions is
the agent’s policy.

7

Markov Decision Processes (MDP)

To define an MDP we need (𝑆, 𝐴, 𝑇, 𝑟, 𝛾, 𝜇):

• A state space (𝑆) or an observation space (𝒪), which could be finite or infinite.
• An action space (𝐴), which could be discrete or continuous (infinite).
• A transition function (model) (𝑇) where 𝑇: 	𝑆	×	𝐴 → Δ(𝑆), with Δ(𝑆) the space of probability distributions of 𝑆.
• A reward function (𝑟) where 𝑟: 	𝑆	×	𝐴 → [0,1] (WLOG).
• A discount factor 𝛾 with 0 ≤ 	𝛾 ≤ 1.
• An initial state distribution 𝜇 ∈ Δ(𝑆), which we will often take to be supported only on some initial state 𝑠! ∈ 𝑆.

A trajectory 𝜏 is composed of state-action-reward triplets: 𝜏 = (𝑠!, 𝑎!, 𝑟!, 𝑠", 𝑎", 𝑟", …).

A policy 𝜋 is a mapping from the space of all trajectories (of any length) (ℋ) to the space of distributions of 𝐴,
𝜋: 	ℋ → Δ(𝐴)

Given these we can define a critical object in RL, the Q-value function

𝑄# 𝑠, 𝑎 	≔ 	𝔼$∼# @
&

𝛾&	𝑟 𝑠&,	𝑎& |𝑠! = 𝑠, 𝑎' = 𝑎 	

Note that 0 ≤ 𝑄# ≤ 1/(1 − 𝛾).

Taken from arXiv:2111.05884

8

Ben has been working on his gelato for the past 10 years, and he believes that there should be a more efficient way of
pricing his products. He is also thinking of expanding his gelato emporium. How to price Ben’s gelato?

For the purposes of coming up with a solution, we have been told that:

• Ben sells N different gelato flavours, and makes more gelato every Sunday after closing the gelateria.

• To avoid confusing customers, Ben wants to fix the prices of the gelatos before opening every morning.

• Ben is willing to allow reductions (markdowns) in the range [0, 1).

• Ben loves data, and he has been collecting daily sales data since he opened his store.

Gelateria MDPs

9

The end-goal of the RL pricing problem is to come up with a policy that maximises returns subject to some
constraints (e.g. we might want to penalise excessive waste, taking too many actions, …), which we encode in a
reward function 𝑟,

𝜋∗ 𝑠 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥)∈+	𝑄 𝑠, 𝑎 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥)∈+	𝔼 @
&

𝛾&	𝑟 𝑠&,	𝑎& |𝑠! = 𝑠, 𝑎' = 𝑎

Caveats:
• In some cases, not all constraints can be encoded into the reward function. For example, there might be a

posteriori business/legal logic constraints that cannot be easily put in the form of a Lagrange multiplier.
• Constrained optimisation is exactly solvable in convex problems. For non-convex problems all hell can break

loose, and most real world applications are non-convex.
• The problem we set out to solve depends on our knowledge of the transition matrix 𝑇, this can be a big

bottleneck.

Policies

10

Data concerns:
• Accuracy of the historical data.
• Amount of parameter space explored, e.g. it’s hard

to convince a business to sell products at 1% of its
value to “gather data”.

• Access to the underlying generative process.

Computational concerns:

There are two quantities that define the dimensionality of
the problem: 𝑆 , 𝐴 . For us, the action space for a
product is fixed, 𝐴 = 101, and the dimensionality of the
problem is 𝓞(100× 𝑆). The size of the state space could
be the number of different gelato flavours in the store.
However, the dimensionality of 𝑆 can grow very fast.

We will see that the approach chosen to solve the
problem can be mapped back to |𝑆|.

The gelato pricing problem

What makes (retailer) pricing
different?

RL and pricing.

12

Partially Observable MDP

We don’t have access to
the sales generative
process.

In a videogame, from any
snapshot we can tell what
will happen in the next
frame.

When pricing products, this
is not the case.

Taken from arXiv:1312.5602v1

13

The gelato pricing problem II

𝑇

We will (mostly) sweep this under the rug and concentrate on given some 𝑇 finding a solution to the pricing problem.

In principle, there are ways to ameliorate the issues with 𝑇 usually through exploration (e.g. trialling new reduction
ranges) or limiting the action of the agent to the support of 𝑇.

Tabular
methods.

15

We consider problems with |𝑆| small enough so that we can walk the entire tree and find the global optimum.

In this case, the ideal solution is a dynamic programming (DP) approach where we compute the Q-value function for
every branch in the tree and choose the maximal one.

The key limitation is time complexity and space complexity. Tree walks are slow (even if you are smart about DP) as
you must effectively visit every node once.

The Q-value function has 𝒪(100×|𝑆|) entries. Doing some sort of beam search over reductions and |𝑆| to keep the
𝑝, 𝑞 top choices reduces the dimensionality to 𝒪(𝑝×𝑞). If we price n-steps ahead this grows like 𝑝×𝑞 ,, not ideal.

Tabular problems

16

The underlying assumption of (most) DP approaches is that we have access to the true underlying generative process
such that the reward is always perfectly known. In most situations, the reward is better described as a random
variable. Further, the number of states is often too large to describe in a discrete way (w/o starting to make use of
approximations).

Push in two main directions:

1. Time – More efficient exploration: learn from MC approaches.
2. Space – “Better representations” for the Q-value function: use of Q-value function/policy approximators (e.g.

neural networks).

Two directions

17

K-armed bandit problems

Taken from: Agarwal, A., et al. “Reinforcement Learning:
Theory and Algorithms.”

An MDP with 𝛾 = 0 reduces to a K-arm bandit problem,
where maximising the reward over H steps is equivalent
to minimising the regret

𝑅 ≔ 𝐻 ⋅ 𝑎𝑟𝑔𝑚𝑎𝑥-	𝜇- − @
./!

01"

𝜇)!

with 𝜇- the mean reward for taking action 𝑖 ∈ 𝐴 , or
equivalently pulling the i-th arm. Henceforth, we consider
the reward to be a random variable.

In this setting, the probability of minimising the regret
with random exploration starting from an arbitrary state
can be exponentially small, 𝒪(|𝐴|10). For our gelateria,
we could expect anywhere 𝒪 102 − 𝒪(1002)
configurations per product.

We need strategic exploration.

18

For a K-armed bandit, we can efficiently explore† the state space by making use of UCB (or LinUCB for continuous
spaces).

The idea is to keep track of the mean reward and promote taking actions that have been not explored much. In
practice, we try every action once and then choose for 𝑡 = 𝐴 + 1,… ,𝐻

𝑎& = 𝑎𝑟𝑔𝑚𝑎𝑥)∈+ 𝜇̂) +
log 𝐻|𝐴|

𝛿
𝑁),&

where 𝛿 ∈ (0,1) and

𝜇̂) =
1
𝑁),&

𝑟) + @
-/|+|

&1"

𝟏{𝑎- = 𝑎} 𝑟- 	 𝑁),& = 1 + @
-/|+|

&1"

𝟏{𝑎- = 𝑎}

Upper Confidence Bound (UCB)
† Note one can show that with probability 1 − 𝛿 bounds
the regret in H steps to (roughly)

𝑅!	~	𝒪 𝐻 𝐴 log
𝐻 𝐴
𝛿 +	|𝐴|

Similar bounds exists for LinUCB [Dani et al., 2008]

Beyond tables.
MC-type exploration and
policy approximation.

20

With UCB, we are not making any assumptions regarding the generative process or our access to the state, but we
still have to explore every action available at least once.

The goal of MC control is to update the value function directly from sampled trajectory as

𝑄# ←	𝔼# @
&

𝛾& 𝑟 𝑠&, 𝑎&

For a basic MC control algorithm:
1. Choose any arbitrary 𝜖-soft policy 𝜋5 to sample the state space
2. For N episodes w/ horizon 𝐻, generate a trajectory 𝜏#" ∼ 𝑠!, 𝑎!, 𝑟!, … , 𝑠01", 𝑎01", 𝑟01"
3. For each step ℎ = 𝐻 − 1,… , 0 compute:

1. Update visits to state-action pair: 𝑁 𝑠!, 𝑎! ← 𝑁 𝑠!, 𝑎! + 1
2. Compute the discounted rewards: 𝐺 𝑠!, 𝑎! ← 𝑟! + 𝛾𝐺(𝑠!, 𝑎!)

3. Update the Q-value function and the target policy: 𝑄" 𝑠!, 𝑎! ← 𝑄" 𝑠!, 𝑎! + #
$ %!,'!

𝐺 𝑠!, 𝑎! − 𝑄"(𝑠!, 𝑎!) 𝜋 𝑠! ← 𝑎𝑟𝑔𝑚𝑎𝑥'∈)	𝑄"(𝑠!, 𝑎)

MC Control

21

Gelateria MC Control

22

MC control requires sampling the entire trajectory. An alternative to MC control for infinite horizon processes is
given by TD methods.

Now the goal is to update value function by making use of the optimality equation

𝑄# 𝑠&, 𝑎& = 𝑟 𝑠&, 𝑎& + 𝛾	𝑄#(𝑠&H", 𝑎&H")

MC control and TD represent a (bias, variance) trade-off. MC= ↓, ↑ , TD= ↑, ↓ . In general, these two methods
approach the same solution, although TD is more sensitive to initialisations.

Temporal-Difference (TD) methods

MC Control roll-out TD(0) method

23

Gelateria TD(0)

24

TD(0) initialisation

Random init.
𝑄! = 𝓝(0,1)

“Bad” init.
𝑄! = 𝑓 𝑥, 𝑦 	|	𝑓 0, 𝑦 = 10, 𝑓 100, 𝑦 = 0	

∀	𝑦 ∈ [0,100]	

Q-values after 10.000 steps

25

(Not-so-real) World dynamics

𝑇 𝑇 𝑇

…

By repeatedly applying some approximation 𝑇 to the real world transitions c𝑇 are losing information about the true
distributions. Best to avoid, for example storing historical trajectories in a replay buffer 𝕭.

26

DQN
Taken from arXiv:1312.5602v1

DQN is an example of a TD method combining a replay buffer with a function approximation for the policy. It should
have the same convergence/optimality guarantees as other TD methods but with the advantage of admitting
arbitrarily large state-action spaces.

We generate the target

𝑇# 𝑠&, 𝑎& = 𝑟 𝑠&, 𝑎& + 𝛾	𝑄#(𝑠&H", 𝑎&H")

where 𝑄# is the output of some deep network, and the nets are trained to minimise the error in

(𝑇#−𝑄)(𝑠, 𝑎) I

27

Further content

Sat, 3rd of June (soon to be on YouTube)

To learn how to use AEs for learning
time series embeddings see

and keep an eye open as we are working
on extending and (hopefully) open
sourcing this project providing a toy
environment for pricing, with pseudo data
generation and some prediction and
optimisation models.

28

RL books:
• Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). The MIT Press.
• Agarwal, A., Jiang, N., Kakade, S. M., & Sun, W. (2021). Reinforcement Learning: Theory and Algorithms.

Deep learning and reinforcement learning courses (w/ video lectures available on YouTube):
• CMU Deep Learning 11785 – Link to course
• Berkeley Deep Reinforcement Learning CS285 – Link to course

Websites:
• RLLib Algo docs (compendium of common algos w/ papers and implementations).
• PyTorch Lightning Bolts for RL (implementations of Deep RL models in Lightning).
• Stable Baselines (implementations of Deep RL w/ many gym environments).

(Some) Useful resources

https://deeplearning.cs.cmu.edu/F23/index.html
https://rail.eecs.berkeley.edu/deeprlcourse/
https://docs.ray.io/en/latest/rllib/rllib-algorithms.html
https://github.com/Lightning-Universe/lightning-bolts/tree/master/src/pl_bolts/models/rl
https://github.com/DLR-RM/stable-baselines3

Thank you.

